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Abstract:—Steerable needles can be used in medical applica-
tions to reach targets behind sensitive or impenetrable areas. The
kinematics of a steerable needle are nonholonomic and, in 2D,
equivalent to a Dubins car with constant radius of curvature. In
3D, the needle can be interpreted as an airplane with constant
speed and pitch rate, zero yaw, and controllable roll angle.

We present a constant-time motion planning algorithm for
steerable needles based on explicit geometric inverse kinematics
similar to the classic Paden-Kahan subproblems. Reachability
and path competitivity are analyzed using analytic comparisons
with shortest path solutions for the Dubins car (for 2D) and
numerical simulations (for 3D). We also present an algorithm
for local path adaptation using null-space results from redundant
manipulator theory. Finally, we discuss several ways to use and
extend the inverse kinematics solution to generate needle paths
that avoid obstacles.

I. INTRODUCTION

Steering needles through soft tissue has the potential to

enable physicians to reach targets behind sensitive or impen-

etrable areas. We focus on a subclass of flexible needles that

provide steerability due to asymmetric forces acting at the

needle tip, for example due to a beveled surface (Webster,

Okamura, Cowan, Chirikjian, Goldberg & Alterovitz 2006)

or a kink near the end of the needle (Engh et al. 2006).

By rotating the needle at the base, the orientation of the

tip can be changed and hence the trajectory of the needle

can be controlled. Other needle steering approaches have

also been developed, including symmetric flexible needles

controlled by applying asymmetric forces at the base (DiMaio

& Salcudean 2005), not at the tip. For the purposes of

this paper, we refer to asymmetric flexible needles (based

on beveled tips or kinks) simply as steerable needles. The

extra mobility of steerable needles over rigid needles can

be harnessed in medical applications such as brachytherapy

(Alterovitz et al. 2005) and brain surgery (Engh et al. 2006)

to reach difficult targets.

Experimental studies (Webster et al. 2005) show that the

motion of steerable needles can be approximated as having

a constant radius of curvature that is independent of insertion

speed. The control inputs for the needle are the insertion speed

and rotation (roll) angle, although for motion planning (the

topic of this paper) insertion speed is often not important.

The rotation angle is then the only real control input and tra-

jectories can be parameterized by insertion depth. A steerable
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Fig. 1. Model setup of a steerable needle and a kinematically equivalent
airplane with fixed speed and pitch rate, zero yaw, and controllable roll rate.

needle (Fig. 1a) is thus kinematically equivalent to an airplane

with fixed speed and pitch rate, zero yaw, and controllable roll

rate (Fig. 1b).

Motion planning for steerable needles is an important

problem and has been studied in several ways in literature.

Most studies focus on planar motion, for which the control

input reduces to switching between curve-left and curve-right.

Alterovitz et al. present a roadmap-based motion planning

framework that explicitly incorporates motion uncertainty and

computes the path that is most likely to succeed (Alterovitz

et al. 2005, Alterovitz et al. 2007, Alterovitz & Goldberg 2008,

Alterovitz et al. 2008). Minhas et al. (2007) show planning

based on fast duty cycle spinning of the needle, effectively

removing the limitation of a fixed-radius path but requiring

continuous angular control input. Kallem & Cowan (2007)

introduce a controller that stabilizes the needle motion to

a plane, allowing practical implementation of planar motion

planning methods.

The first 3D motion planning algorithm was introduced by

Park et al. (2005, 2008) and used diffusion of a stochastic

differential equation to generate a family of solution paths.

The authors also describe several extensions to avoid obstacles.

Duindam et al. (2008) presented a second 3D motion planning

algorithm that uses fast numerical optimization of a cost

function to compute feasible needle paths in 3D environments

with obstacles.
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This paper presents a different solution to the 3D motion

planning problem for steerable needles, based on inverse

kinematics. We propose a new geometry-based algorithm in-

spired by the Paden-Kahan subproblems in traditional inverse

kinematics algorithms (Murray et al. 1994). Just as the Paden-

Kahan subproblems, our algorithm (Section III) can be fully

described in geometric terms of intersecting lines, planes, and

circles, and computing the solution simply requires a few

trigonometric functions. We analyze reachability and compet-

itivity of the solution (Section IV) using analytic comparison

to the Dubins car solution (Dubins 1957) and numerical

simulations. We also present a method to locally adapt needle

paths using null-motions (Section V).

The proposed motion planning algorithms find feasible

needle paths very quickly and provide some capability for

obstacle avoidance. As the current accuracy of medical data

is limited, these algorithms may be sufficient by themselves,

but we envision them being part of more general global

motion planning systems for more complex environments with

obstacles, as discussed in Section VI.

II. PROBLEM STATEMENT AND MODELING ASSUMPTIONS

A. Model parameters and assumptions

Throughout this paper, we only consider the idealized

kinematics of the needle in a static and rigid (non-deforming)

environment. We assume that the motion of the needle is

fully determined by the motion of the needle tip, that the

motion of the needle tip is instantaneously along a perfect

circle of constant radius r, and that rotations of the base

are instantly transmitted to rotations of the tip. Experimental

results (Webster et al. 2005) show that needle materials can

be chosen such that the needle indeed moves along an arc of

approximately constant radius, but the effects of tissue inho-

mogeneity, friction, and needle torsion can be significant and

will require compensation (Kallem & Cowan 2007) in practical

applications. The assumption of rigidity is strong but necessary

to reduce complexity. We consider the presented method for

path planning as a tool to compute an initial solution that may

be locally adapted and optimized to account for deformations.

Tissue deformation for planar needle motion planning has

been studied for rigid needles (Alterovitz et al. 2003) and

recently for control using external tissue manipulation (Torabi

et al. 2009).

Under the previous assumptions, the motion of the needle is

determined kinematically by two control inputs: the insertion

velocity, denoted v, and the tip rotation velocity, denoted ω.

We present the kinematics model for general v(t) but remove

this redundant degree of freedom in the next section.

Fig. 2 illustrates the model setup. We rigidly attach a

coordinate frame Ψn to the tip of the needle, with axes aligned

as in the figure, such that the z-axis is the direction of forward

motion v and needle orientation ω, and the beveled tip causes

the needle to rotate instantaneously around a line parallel to

the x-axis and passing through the point (0,−r, 0).
Following standard robotics literature (Murray et al. 1994),

the position and orientation of the needle tip relative to a

reference frame Ψs can be described compactly by a 4 × 4

r
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ω
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Ψn

Fig. 2. Choice of coordinates and reference frame Ψn at the needle tip.
Control input ω generates a rotation around z, while control input v generates
a circular motion around an axis parallel to x and passing through (0,−r, 0).

matrix gsn(t) ∈ SE(3) of the form

gsn(t) =

[

Rsn(t) psn(t)
0 1

]

(1)

with Rsn ∈ SO(3) the rotation matrix describing the relative

orientation, and psn ∈ T (3) the vector describing the relative

position of frames Ψs and Ψn.

The instantaneous linear and angular velocities of the needle

are described by a twist Vsn ∈ se(3) which in body coordi-

nates Ψn takes the convenient form

V n
sn(t) =

[

0 0 v(t) v(t)/r 0 ω(t)
]T

V̂ n
sn(t) =









0 −ω(t) 0 0
ω(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 0









(2)

in equivalent vector and matrix notation. The twist relates to

gsn as

ġsn(t) = gsn(t)V̂ n
sn(t) (3)

This kinematic model is the same as the unicycle model by

Webster, Kim, Cowan, Chirikjian & Okamura (2006). When

the twist is constant, (3) becomes a linear ordinary differential

equation (ODE) that can be integrated as

gsn(t) = gsn(0) exp(tV̂ n
sn) (4)

for which a relatively simple analytic expression exists

(Murray et al. 1994). In the path planning algorithms, we

construct paths for which V̂ n
sn is piecewise constant and com-

pute the resulting transformation using this efficient analytic

expression.

B. Problem statement

The objective of the motion planning algorithms in this

paper is to find feasible paths between given start and goal

configurations in the absence of obstacles1. More precisely, the

1Section VI discusses several ways to use and extend the presented
algorithm to environments with obstacles.
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inputs to the algorithm are an initial needle pose gstart ∈ SE(3)
and a desired needle pose ggoal ∈ SE(3). The outputs of

the algorithm are control functions v(·) and ω(·) and a finite

end time 0 ≤ T < ∞, such that the solution gsn(·) of

the differential equation (3) with gsn(0) = gstart satisfies

gsn(T ) = ggoal. If no feasible path can be found, the algorithm

returns failure.

The kinematics equations (2) and (3) are invariant to time

scaling, in the sense that the path traced out by the needle

does not change if the control inputs v(·) and ω(·) are scaled

by the same (possibly time-varying) factor. Therefore, we can

simplify the motion planning problem by assuming without

loss of generality that v(·) ≡ 1, which is equivalent to parame-

terization by insertion depth (Kallem & Cowan 2007, Duindam

et al. 2008). The insertion time T thus represents the total path

length since
∫ T

0
|v(t)|dt =

∫ T

0
dt = T . A pure rotation, i.e.

motion with non-zero ω and zero v, can be represented by

a Dirac pulse in the signal ω with magnitude equal to the

desired total angle of rotation. These impulses and the general

choice v ≡ 1 are used only for compact representation of

the path; in practical execution of a given solution path, the

speed of insertion can be changed such that the motion is

safe, while impulsive rotations should obviously be executed

by stopping insertion (v = 0) and slowly rotating the needle

until the desired angle.

Although motion planning is based on connecting general

3D poses (both position and orientation), solving a difference

in initial or final roll angle is trivial as this degree of freedom

is directly controlled through ω(·). So although the inputs to

the algorithm are general elements of SE(3), we often mainly

focus on path planning between given start and goal position

and direction of the needle, i.e. only considering the z-axis of

Ψn. Given a solution from the start position and direction to

the goal position and direction, the full motion plan from a

start pose to a goal pose follows directly by adding the required

pure rotations as Dirac impulses in ω at the beginning and end

of this solution. We discuss the difference in the number of

degrees of freedom in the control solution vs. the configuration

space in Section III-B.

III. PATH PLANNING USING INVERSE KINEMATICS

We present two motion planning solutions based on inverse

kinematics, one for the planar (2D) case and one for the

general spatial (3D) case. The motion planning problem is

considered planar if the start position ps, start direction zs,

goal position pg , and goal direction zg are all in the same

plane.

In both inverse kinematics solutions, we look for a control

input function ω(·) of a very specific form, namely a function

that is zero everywhere except for a fixed number of Dirac

impulses (two in the planar case, four in the spatial case, see

Fig. 3). Geometrically, this means that we look for trajectories

that are concatenations of a fixed number of circular segments

with radius r: the needle moves along a circle when ω = 0,

and instantaneously changes direction at the time instants that

ω is a Dirac impulse. Furthermore, the magnitudes of the Dirac

impulses in the planar case are constrained to be exactly π,

ω

t0
t1 t2 t3

π π

(a) Planar (2D) path, consisting of three insertion segments of
length ti, separated by two fixed rotations of π radians.

ω

t0
t1 t2 t3 t4

θ1

θ2

θ3 =π θ4 =π

(b) Spatial (3D) path, consisting of four insertion segments of
length ti, separated by four rotations, two of θi and two of π
radians.

Fig. 3. Structure of the solution ω(·) for the 2D and 3D planning problems.

corresponding to a change in direction between curve-left and

curve-right. We also choose a spatial solution for which the last

two impulsive rotations are π, making the last three segments

of the spatial path co-planar as well.

The specific choices in the structure of ω(·) result in

geometrically intuitive solutions that are relatively straight-

forward to compute. The simplicity of the proposed solu-

tions comes at the cost of not necessarily being optimal

in terms of path length or required control effort. Earlier

work (Duindam et al. 2008) studied methods to find needle

trajectories by numerically optimizing a particular given cost

function expressing the desired balance between control effort,

path length, and other costs. The solution paths discussed in

the present paper could be used as initial guess for these

optimization algorithms and thus be (locally) adapted to have

lower cost.

A. Inverse kinematics in 2D

We first consider the planar path planning problem with

ω(·) as in Fig. 3a. For simplicity, we only consider relatively

short-distance planning problems for which a solution with

three consecutive circular segments exists; the approach can

be extended for longer paths by adding additional circular seg-

ments. The relative position of the start and goal are described

by two displacements x and y, their relative orientation by a

single angle θ. The purpose of the path planning algorithm is

to find the three insertion depths t1, t2, t3 describing a feasible
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Fig. 4. Two geometric solutions for the same planar inverse kinematics problem, both using sequential curve-left, curve-right, curve-left motions.

needle path from start to goal. Note that the needle travels a

distance ti = rαi when moving along a circle of radius r for

αi radians, and hence we can equivalently look for the three

angles αi in Fig. 4. These should be such that if we start at

ps in the direction zs heading left, move rα1 forward, turn π,

move rα2 forward, turn π, and move rα3 forward, we arrive

exactly at the desired goal pose. The mirrored case starting

with a right turn can be computed similarly.

We can solve for the angles αi by looking at the setup in

Fig. 4 and realizing that the three centers of rotation (marked

by × in the figure) form a triangle with known edge lengths.

Using the cosine rule for this triangle, we can write

cos(α2) = 1 −
(x + r − r cos(θ))2 + (y − r sin(θ))2

8r2
(5)

This equation has two solutions for α2, which correspond to

the two paths shown in Fig. 4. With α2 known, the other two

angles follow uniquely as

α1 = atan2 (y − r sin(θ), x + r − r cos(θ)) −
1

2
(π − α2)

(6)

α3 = θ − α1 + α2 (7)

with atan2 the inverse tangent function solved over all four

quadrants. Since the needle can only move forward, angles

must be chosen as αi ∈ [0, 2π). The required insertion

distances ti follow immediately as ti = rαi.

B. Inverse kinematics in 3D

Now consider the 3D inverse kinematics problem of con-

necting two general poses in SE(3) by a valid needle path. We

propose one solution using eight consecutive insert and turn

motions as shown in Fig. 3b; an explicit geometric solution

using fewer motions is still an open problem.

The geometry of this solution is illustrated in Fig. 5. The

problem is split into two parts: first, the needle is turned and

inserted such that its instantaneous line of motion (the instan-

taneous direction of the needle) intersects the line describing

the goal position and direction. Second, the remaining planar

problem is solved using the solution from Section III-A.

More precisely, we first choose any point q on the line

defined by pg and zg . This point q will be the intersection

point of the two lines defining the remaining planar problem.

With q defined, the needle is first rotated by θ1 = β1 until its

(y, z)-plane contains q. The required angle β1 satisfies

tan(β1) = −
xT

s (q − ps)

yT
s (q − ps)

(8)

which has two solutions β1 that differ by π.

Second, the insertion distance t1 = rβ2 is solved such that

the line through the needle tip in the direction z2 contains the

point q. If q is outside the circle describing the needle motion

along β2, two solutions exist, with z2 either pointing towards

(as in the figure) or away from q. These solutions are

β2 = atan2
(

zT
s qv, yT

1
qv

)

± arccos

(

r

|qv|

)

(9)

with qv := q − ps + ry1. No solution exists if q is inside the

circle (|qv| < r).

Third, the needle is rotated by θ2 = β3 until pg (and hence

the whole line through q and pg) is contained in the needle’s

(y, z)-plane:

tan(β3) = −
xT

2
(pg − p2)

yT
2
(pg − p2)

(10)

which again gives two solutions that differ by π. The re-

maining angles β4, β5, β6 (corresponding to the time segments
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(a) Rotate β1 around zs until the needle’s (y, z)-plane contains q.
Insert rβ2 until q is on the line through z2.
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−β3
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z3

β4
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(b) Rotate β3 around z2 until the needle’s (y, z)-plane contains pg .
Solve the remaining planar problem.

Fig. 5. Geometric derivation of an inverse kinematic solution on SE(3). The point q may be chosen anywhere along the line through pg in the direction
zg , although not all choices may generate a solution path. The planar IK algorithm is used to find the values of β4,5,6.

t2, t3, t4) can then be solved using the 2D planner from

Section III-A.

In this algorithm, we have the following degrees of freedom

to choose a solution. First is the choice of the point q: this

can be anywhere on the line containing pg and zg , which

means varying q generates a one-dimensional subspace of

possible inverse kinematics solutions. Second, we can choose

one of two possible solutions βi for each of the four angles

in equations (8–10) and (5), resulting in 24 possible combi-

nations. Not all of these choices may give feasible paths for

a given start and end pose, and it is also not directly obvious

which choice will result in the ‘best’ path between the two

poses. Nevertheless, since the inverse kinematics equations

can be computed very quickly, one can simply compute all

combinations for a number of choices of q and pick the

best solution, with ‘best’ defined, for example, using a cost

function.

The inverse kinematics solution describes a path consisting

of four insertions (translations) and four rotations, a control

space with eight degrees of freedom as shown in Fig. 3b. Two

degrees of freedom (θ3 and θ4) are constrained to be exactly π,

and one additional degree of freedom is constrained through

the choice of the point q. The remaining five degrees of

freedom are exactly sufficient to describe any relative position

and direction between the start and goal needle configuration;

the final roll angle of the needle is not prescribed and hence

the space of relative configurations is five-dimensional. We

could even consider the space of relative configurations to be

four-dimensional if we discard the initial roll angle, but this

is merely a matter of calling β1 either a control action or an

initialization step. In Section V, we relax the constraints on

the control space and show how the shape of the needle path

can be adapted using the resulting extra degrees of freedom.

IV. REACHABILITY AND COMPETITIVITY

To evaluate the quality of the paths generated by the

presented inverse kinematics (IK) solutions, we study the

set of reachable needle poses and competitivity (Icking &

Klein 1995, Gabriely & Rimon 2005) of the computed so-

lutions. Competitivity in this case refers to the path length of

the computed solution; it has no relation to competitivity in

the sense of computational speed (the IK algorithms run in

constant time).

A. Reachability and competitivity in 2D

Consider first the solution to the planar problem as described

in Section III-A. The algorithm will clearly only find a solution

if the right-hand side of (5) has norm less than or equal to

one, or geometrically, if the centers of the circles tangent to

the start and goal poses are no farther than 4r apart. This

condition defines the set of reachable relative needle poses.

To describe competitivity of the algorithm for these reach-

able poses, we compare the IK solutions to the trajectories

generated by allowing an infinite number of direction changes.

In that case, a trajectory can be generated with an arbitrary

radius of curvature larger than or equal to r, by asymmetrically

cycling between curve-left and curve-right and taking the limit

of this cycling frequency to infinity, similar to the idea used by

Minhas et al. (2007). This means that in the limit, the needle

can behave like a Dubins car (Dubins 1957) with minimum

radius of curvature r.

The optimal path for a Dubins car is known to consist of

two circular arcs with radius r connected by another circular
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(a) Left-straight-left Dubins path. (b) Left-straight-right Dubins path.

Fig. 6. Paths generated by the 2D inverse kinematics algorithm compared to the optimal paths for a Dubins car. The worst-case scenario occurs when the
three circles defining the IK solution are farthest apart and the straight-line segment of the optimal Dubins path provides the best ‘short-cut’.

arc or a straight line (Dubins 1957). For a given start and

end pose, the IK solution only differs from the Dubins path if

the connecting segment for the Dubins path is a straight line;

the IK solution will still contain a (sub-optimal) circular arc.

Furthermore, the Dubins path may start and end with circular

arcs in the same direction or in opposite directions (Fig. 6),

whereas the IK solution always starts and ends with a turn

in the same direction. It is intuitively clear that the largest

difference in path length occurs at the border of the reachable

space where the three circles of the IK solution are aligned;

if the circles are not aligned, one of the two solution paths is

relatively ‘more straight’ and hence shorter, as illustrated in

Fig. 4. In the first case (Fig. 6a), the maximum ratio of the

path lengths is

sup
‖IK path‖

‖Dubins path‖
= sup

θi≥0

rθa + rθb + 2πr

rθa + rθb + 4r
=

π

2
(11)

For the second case (Fig. 6b), we can compute the length of

the straight-line segment q − p as

‖q − p‖2 = 4r2 (2 − sin(θd) − sin(θe))
2

+4r2 (cos(θd) − cos(θe))
2

(12)

from which we find that the maximum path length ratio equals

sup
‖IK path‖

‖Dubins path‖
=

sup
θi≥0

rθc + 2πr − rθe

rθc + 2rθd + rθe + ‖q − p‖
≈ 1.63 >

π

2

(13)

The degree of competitivity of the 2D IK solution is hence

approximately 1.63. Note that this is a bound on the com-

petitivity that does not take into account the number of

direction changes; the medical benefit of a shorter needle

path (less tissue cutting) may very well be outweighed if this

requires a large number of direction changes (180o rotations)

with associated amounts of friction forces on the tissue sur-

rounding the needle path. In addition, from a planning and

control point of view, direction changes increase uncertainty

in the state estimate and complexity in the control algorithm

(Reed 2008, Reed et al. 2008).

B. Reachability and competitivity in 3D

Continuing with the 3D IK solution from Section III-B,

we present a reachability and competitivity analysis based on

numerical simulation. Formal geometric proofs and bounds of

the algorithm are subject of future research; at this point we do

not have a good approximation for the optimal path and simply

compare the IK solutions to the Euclidean distance between

the start and goal positions. Future work could compare the

presented solution to the paths generated by the method of

Park et al. (2008). We take q = pg throughout the analysis;

different choices give qualitatively similar results.

First consider Fig. 7. This illustrates the lengths of the IK

trajectories starting at the center of the figure and ending at

goal positions in the plane of the figure, with start and goal

directions equal and pointing to the right. The brightness of

each pixel indicates the length of the IK path divided by the

Euclidean distance between the start and goal locations: dark

colors represent small ratios (good paths) while light colors

represent large ratios (bad paths). Fig. 7b illustrates several

examples of solution trajectories.

A set of reachable states shows up in the figure as the

‘figure-eight’ around the start location. Points outside this

shape cannot be reached for the given goal direction. The

figure also shows a distinction between poses that can be

reached with reasonably short curves (darker region) and

poses that require significantly longer paths (lighter region).

This distinction is sharp in the area in front of the needle

(right side of the figure) but is more diffuse for poses on

the sides of the needle (top and bottom of the figure). If we

consider competitivity in an informal way, meaning whether

the algorithm can generated paths of reasonable lengths, we

can say that the algorithm is competitive in the darker region

of the figure; relative poses that are in the lighter region may
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(a) Visualization of relative path lengths (shorter paths are darker)
as a function of the goal position.
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(b) Several example paths corresponding to various points in the
image (∗ delimits path segments).

Fig. 7. Reachability and relative path lengths obtained using the inverse kinematics algorithm. The algorithm tries to find a path from the center of the image
to each pixel in the image, with both start and goal direction aimed to the right.
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yaw
0o 60o 120o 180o

0o

30o
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Fig. 8. Reachability and relative path lengths as in Fig. 7 for various relative yaw and pitch angles for the goal pose. Grid lines are 2r units apart.
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be reachable, but the paths are so unwieldy that they are of

little practical use in our brachytherapy application.

Fig. 8 shows additional plots generated by varying the two

remaining degrees of freedom in placing the goal pose: the

in-plane yaw angle and out-of-plane pitch angle (the inverse

kinematics solution is invariant to roll about the initial and

final needle directions).

The figure shows that as the goal direction is turned away

from the straight-ahead case (change in yaw), the set of reach-

able and competitive paths rotates in the same direction while

maintaining a roughly similar shape. As the goal direction

is rotated out of plane (change in pitch), the competitive

paths near the starting pose disappear until only poses at a

significant distance (three to five times the radius of curvature)

are competitive.

In the three-dimensional case, it remains a difficult task to

precisely characterize the set of poses that can be reached

with a reasonably short path. Comparing the solutions to the

Euclidean distance provides some insight but no global bound

on the solutions: competitivity measures are unbounded when

comparing to the Euclidean distance, since for infinitely close

but non-collinear needle orientations the path length of the IK

solution remains finite while the Euclidean distance converges

to zero.

To use the inverse kinematics planner as a local planner in

global roadmap-based planning methods such as the Proba-

bilistic Roadmap method (Kavraki et al. 1996), it is important

to characterize the set of goal poses that are reachable from a

given needle pose. Numerical simulations such as those shown

in Fig. 8 can be used to construct an approximation of the set

of goal poses that can be reached with a competitive path (with

‘competitive’ in the informal meaning of ‘reasonably short

path’). This set can be used as the definition of ‘neighborhood’,

i.e. those needle poses that are likely to be connectible and can

become edges in the roadmap if they do not intersect obstacles.

V. PATH ADAPTATION USING NULL-MOTIONS

The presented inverse kinematics solution can be computed

very quickly but is generally not the optimal solution in the

sense of avoiding obstacles or minimizing path length or re-

quired control effort. Earlier work considered path planning as

a pure numerical optimization problem (Duindam et al. 2008),

but in this section we show how sub-optimal paths such as

those generated by the IK planner can be locally optimized

and adjusted using null-motions.

Consider an IK solution between two general 3D needle

poses. By construction, this solution describes a path from start

to goal consisting of eight consecutive turning and insertion

control actions. We can think of this path as a redundant serial

robot manipulator arm with eight joints (Fig. 9a). Since the

relative pose of the goal is given by six parameters, standard

robotics theory (Murray et al. 1994) tells us that the robot has

a two-dimensional space of null-motions2, provided it is not at

a singularity. If the joints are moved in this null-motion space,

2The method can be directly extended to the case where we only consider
the final (and initial) needle direction, leaving the roll angle unconstrained.
This results in five (four) parameters describing the relative configuration and
hence a three-dimensional (four-dimensional) space of null-motions.

the shape of the robot (i.e. the shape of the needle path) will

change without changing the pose of the end effector (i.e. the

needle tip).

The set of null motions is described by the null space of the

geometric Jacobian J(q) ∈ R
6×8 of the robot, which relates

the spatial twist V s
sn to the joint velocities q̇ as V s

sn = J(q)q̇
(Murray et al. 1994). Given the Jacobian, we can change the

shape of the path by changing the joint angles in such a way

that q̇ ∈ Null(J(q)) at all times.

Fig. 9b shows an example of how one inverse kinematics

solution can be locally transformed in this way into a family

of solution curves. Intuitively, this set of curves was generated

by starting from the IK solution indicated in the figure (the

dashed line), and ‘pulling’ on the curve from several points

laid out in a circle, while holding the start and end pose of the

needle fixed. More precisely, we model the robot as a viscous

system with damping in each joint that counteracts applied

forces, and write the governing equations as

q̇ = B(q)JT
i (q)Fi + B(q)JT (q)λ (14)

0 = J(q)q̇ (15)

with Fi the wrench (Murray et al. 1994) corresponding to the

(known) externally applied pulling force, Ji(q) the Jacobian of

link i at which Fi is applied, λ the required constraint wrench

acting at the tip to constrain its motion, and B(q) > 0 the

symmetric positive-definite inverse damping matrix that relates

the joint torques τ to the joint velocities as q̇ = B(q)τ . The

first equation relates the total torque (due to external forces Fi

and λ) to the change in the joint angles, the second equation

describes the end point constraint that should be satisfied. Note

that these equations do not relate to any actual physical needle

motions and only represent a mathematical procedure.

Substituting (14) into (15), solving for λ, and substituting

back into (14) results in an unconstrained equation for q̇ that

no longer contains λ:

q̇ =
(

I − BJT (JBJT )−1J
)

BJT
i Fi (16)

This ODE describes the evolution of q under the influence

of an external wrench Fi and tip constraint Jq̇ = 0. It has

a unique solution if B is invertible and J has full rank (no

singularity). Equation (16) projects the velocity BJT
i Fi due

to the wrench Fi along the columns of BJT onto the null

space of J . The matrix B(q) defines a metric on the space of

torques that can be chosen in any appropriate way, e.g. as a

function that drives the system away from configurations that

are singular or contain negative-length path segments.

For the example of Fig. 9b, we chose B diagonal with

Bjj(q) → 0 as qj → 0 for all joints j describing insertion

path segments, thus avoiding negative-length path segments.

We applied a linear force in the middle of the kinematic chain

(link 5), directed toward one of the dots, and integrated (16)

over time to obtain the pod-shaped family of needle paths

shown in the figure.

This method of path adaptation can be used in fully auto-

mated motion planning (e.g. to perform gradient descent on

some cost function with penalty costs for obstacle penetration)

with changes in q constrained to be null motions. More
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(a) A needle path as an 8-joint robot.
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(b) Null-motions generate a family of needle paths from start to goal.

Fig. 9. Representation of a needle path as a robot with eight joints, and how null motions can be used to generate a family of solution curves.

directly, in interactive (computer-assisted) motion planning

systems, it can provide the user with an intuitive path ad-

justment tool similar to the control points on a spline curve

that can be moved to change its local shape. Although there is

no guarantee this approach will always work, it provides the

user with an additional tool to construct suitable needle paths.

VI. EXTENSIONS FOR OBSTACLE AVOIDANCE

The inverse-kinematics based motion planning algorithm

quickly computes feasible needle paths and allows the user

to focus on specifying higher-level objectives in terms of start

and goal needle poses. Indeed, the main motivation and reason

for computer-assistance in this motion planning problem is the

degree of under-actuation and nonholonomicity, which can be

dealt with using the presented approach.

Nevertheless, the algorithms provide no guarantees for

a solution or a structured incremental way to search for

other trajectories in case of failure due to obstacles or other

complications. The only possibilities are to choose different

parameter settings or, for the null-motion based method, to try

applying external forces at a different point or in a different

direction.

This section briefly discusses four ways in which the

described planning algorithms can be used and extended to

produce needle paths that avoid obstacles. Some can be im-

plemented directly; others are the subject of ongoing research.

First, the inverse kinematics solutions have a number of free

parameters that can be chosen to maximize obstacle avoidance.

In the planar case, this merely amounts to choosing the left or

right solution in Fig. 4 and whether to start curve-left or curve-

right. The spatial solution, however, not only provides four

such binary choices (sixteen combinations), but in addition

allows the point q to be chosen anywhere on a line (though

not all choices may result in a solution path). This choice

defines two planes in which the spatial solution path will be

contained, and we hence the solution path will be free if we

choose q such that these two planes do not intersect obstacles.

This is clearly a conservative strategy since the actual needle

path will only reside in a small part of the planes.

A second way to implement obstacle avoidance is to use

optimization-based planning (Duindam et al. 2008), in which

obstacle penetration is associated with a penalty cost, and the

motion planning algorithm implicitly avoids obstacles by mini-

mizing the cost. One of the open problems in this optimization-

based scheme is the choice of a good initial estimate for the

optimal solution, since the optimization problem is nonlinear

and non-convex. The inverse kinematics solutions presented

in this paper may serve as good initial estimates for the

optimization routine, since they already achieve the goal of

connecting the start state to the goal state. The optimization

can then locally adapt the solution paths as to avoid obstacles.

Third, the inverse kinematics solutions can be used as a

component in global planning methods that can avoid ob-

stacles. In motion planning techniques such as PRM (Prob-

abilistic Roadmaps, see Kavraki et al. (1996)) and related

techniques such as RRT (Rapidly-Exploring Random Trees,

LaValle (1998)) and SMR (Stochastic Motion Roadmaps, Al-

terovitz et al. (2007)), possible paths for a system are explored

by sampling from the free configuration space and connecting

these samples using a fast so-called local planner. In the case

of steerable needles, the presented inverse kinematics solution

could be used as a local planner, as it can quickly compute

a feasible trajectory between nearby configuration states. This

is the subject of ongoing research, some preliminary results

are described by Xu et al. (2008).

Finally, a fourth way to use the inverse kinematics solutions

in obstacle avoidance schemes is to rely partially on user

input. When it comes to global motion planning, computers

are severely limited in cognitive abilities and can require large

amounts of computation power and time to solve problems
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(a) Planning problem with marked intermediate pose (b) First motion plan using inverse kinematics (c) Second motion plan using inverse kinematics

Fig. 10. Difficult motion planning problems with complex obstacles can be solved using semi-automated planning. The algorithm is provided with an
intermediate pose, a ‘way point’ that separates the global motion planning problem into two relatively straight-forward local motion planning problems.

that are easy for humans. Consider for instance the motion

planning problem of Fig. 10a: for the reader it is instantly

clear that any feasible path should pass near the intermediate

point marked in the figure, but computer-based planners may

take significant amounts of computation time to ‘realize’ this,

or they may not be able to find a feasible solution at all.

One way to solve this problem is to combine human cogni-

tive abilities for global planning with computer power for local

planning. This idea is similar to the concept of ‘many-worlds

browsing’ (Twigg & James 2007), in which the user assists

an optimization algorithm and interactively and intuitively

constrains the vast search space of possible solutions. For our

motion planning system, if a human path planner indicates the

desired intermediate point as in Fig. 10a, automatic motion

planning algorithms can be applied to solve the resulting

two subpaths. Finding a path from the start location to the

intermediate location is trivial, as is finding a path from the

intermediate location to the goal. Figs. 10b and 10c show

the resulting subpaths obtained using the inverse kinematics

planner; comparable results are obtained when using the direct

numerical optimization approach described by Duindam et al.

(2008). For this example, the algorithms are not sensitive to

the exact position and orientation of the intermediate pose,

but the approach could be extended to iterate over several

intermediate poses near the one indicated.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents constant-time geometrically motivated

motion planning algorithms for steerable needles and airplanes

with constant speed and pitch rate, zero yaw, and controllable

roll. The first algorithm uses inverse kinematics to explicitly

compute feasible paths in 3D, the second uses null-motions to

adapt paths to avoid obstacles or achieve other objectives.

As briefly discussed, these algorithms can be used as

components in larger more general motion planning schemes,

possibly using limited user-input to guide automatic local plan-

ning. In future work, we plan to explore this direction and use

the IK algorithm as a local planner in (autonomous) roadmap-

based algorithms. Recent results using Rapidly-Exploring

Random Trees (Xu et al. 2008) are encouraging, although

computation requirements are still several orders of magni-

tude larger than with direct optimization-based algorithms

(Duindam et al. 2008).

Another main future direction of our research is to find a

systematic way to include uncertainty during motion planning

and control (Hauser et al. 2009). Our application of steerable

needles contains several sources of uncertainty, including

needle motion uncertainty, tissue flexibility and friction, and

sensing inaccuracies. These uncertainties should be taken

into account in the motion planning stage, as discussed and

implemented for the 2D case in previous work (Alterovitz

et al. 2007). The presented fast local motion planning algo-

rithm can be used to quickly test connectivity and iteratively

study the effect of perturbations.

Finally, reachability and competitivity analyses were pre-

sented for the 2D and 3D inverse kinematics algorithms.

Future work will be aimed at reducing the number of control

parameters to six (or five when discarding final roll) to match

the intrinsic dimension of the control problem. We also plan

to extend the analysis of the current 3D algorithm to provide

bounds on the competitivity compared to the optimal shortest-

path solution. A promising direction is the comparison with

paths generated by the approach of Park et al. (2008). The

results from these analyses may also prove useful for roadmap-

based motion planning and help define ‘neighborhood’ of

states: a static asymmetric relation that describes what con-

figurations are reachable from a certain configuration via a

reasonably short path (in the absence of obstacles). This

extra structure would hopefully reduce the required number

of function calls to the local planner.

ACKNOWLEDGMENTS

This work is supported in part by the National Institutes

of Health under grants R01 EB006435 and F32 CA124138

and by the Netherlands Organization for Scientific Research.

We thank Professors Okamura, Chirikjian, Cowan, and Taylor

from Johns Hopkins University for the helpful comments and

suggestions, and Prof. Cowan for the idea of using null-

motions for path adaptation. We also thank Jean Pouliot



11

and I-Chow Joe Hsu from the University of California, San

Francisco.

REFERENCES

Alterovitz, R., Branicky, M. & Goldberg, K. (2008), ‘Motion planning under
uncertainty for image-guided medical needle steering’, International

Journal of Robotics Research 27(11–12), 1361–1374.

Alterovitz, R. & Goldberg, K. (2008), Motion Planning in Medicine: Op-

timization and Simulation Algorithms for Image-Guided Procedures,
Vol. 50 of Springer Tracts in Advanced Robotics (STAR), Springer.

Alterovitz, R., Goldberg, K. & Okamura, A. (2005), Planning for steerable
bevel-tip needle insertion through 2D soft tissue with obstacles, in

‘Proceedings of the IEEE International Conference on Robotics and
Automation’, pp. 1640–1645.

Alterovitz, R., Goldberg, K., Pouliot, J., Taschereau, R. & Hsu, I. (2003),
Sensorless planning for medical needle insertion procedures, in ‘Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems’, pp. 3337–3343.
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