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Abstract— We present a new motion planning framework that
explicitly considers uncertainty in robot motion to maximize
the probability of avoiding collisions and successfully reaching
a goal. In many motion planning applications ranging from
maneuvering vehicles over unfamiliar terrain to steering flexible
medical needles through human tissue, the response of a robot to
commanded actions cannot be precisely predicted. We propose
to build a roadmap by sampling collision-free states in the
configuration space and then locally sampling motions at each
state to estimate state transition probabilities for each possible
action. Given a query specifying initial and goal configurations,
we use the roadmap to formulate a Markov Decision Process
(MDP), which we solve using Infinite Horizon Dynamic Pro-
gramming in polynomial time to compute stochastically optimal
plans. The Stochastic Motion Roadmap (SMR) thus combines
a sampling-based roadmap representation of the configuration
space, as in PRM’s, with the well-established theory of MDP’s.
Generating both states and transition probabilities by sampling
is far more flexible than previous Markov motion planning ap-
proaches based on problem-specific or grid-based discretizations.
We demonstrate the SMR framework by applying it to non-
holonomic steerable needles, a new class of medical needles that
follow curved paths through soft tissue, and confirm that SMR’s
generate motion plans with significantly higher probabilities of
success compared to traditional shortest-path plans.

I. INTRODUCTION

In many applications of motion planning, the motion of the
robot in response to commanded actions cannot be precisely
predicted. Whether maneuvering a vehicle over unfamiliar
terrain, steering a flexible needle through human tissue to
deliver medical treatment, guiding a micro-scale swimming
robot through turbulent water, or displaying a folding pathway
of a protein polypeptide chain, the underlying motions cannot
be predicted with certainty. But in many of these cases, a
probabilistic distribution of feasible outcomes in response to
commanded actions can be experimentally measured. This
stochastic information is fundamentally different from a de-
terministic motion model. Though planning shortest feasible
paths to the goal may be appropriate for problems with
deterministic motion, shortest paths may be highly sensitive
to uncertainties: the robot may deviate from its expected
trajectory when moving through narrow passageways in the
configuration space, resulting in collisions.

(a) Minimizing path
length

ps = 27%

(b) Maximize probability of
success using SMR

ps = 57%

Fig. 1. The expected results of two plans to steer a Dubins-car mobile
robot with left-right bang-bang steering and normally distributed motion
uncertainty from an initial configuration (solid square) to a goal (open circle).
Dots indicate steering direction changes. The Stochastic Motion Roadmap
(SMR) introduces sampling of the configuration space and motion uncertainty
model to generate plans that maximize the probability ps that the robot will
successfully reach the goal without colliding with an obstacle. Evaluation
of ps using multiple randomized simulations demonstrates that following a
minimum length path under motion uncertainty (a) is substantially less likely
to succeed than executing actions from an SMR plan (b).

In this paper, we develop a new motion planning frame-
work that explicitly considers uncertainty in robot motion at
the planning stage. Because future configurations cannot be
predicted with certainty, we define a plan by actions that
are a function of the robot’s current configuration. A plan
execution is successful if the robot does not collide with any
obstacles and reaches the goal. The idea is to compute plans
that maximize the probability of success.

Our framework builds on the highly successful approach
used in Probabilistic Roadmaps (PRM’s): a learning phase
followed by a query phase [20]. During the learning phase, a
random (or quasi-random) sample of discrete states is selected
in the configuration space, and a roadmap is built that repre-
sents their collision-free connectivity. During the query phase,
the user specifies initial and goal states, and the roadmap is
used to find a feasible path that connects the initial state to
the goal, possibly optimizing some criteria such as minimum
length. PRM’s have successfully solved many path planning
problems for applications such as robotic manipulators and



mobile robots [12, 22]. The term “probabilistic” in PRM
comes from the random sampling of states. An underlying
assumption is that the collision-free connectivity of states is
specified using boolean values rather than distributions.

In this paper, we relax this assumption and combine a
roadmap representation of the configuration space with a
stochastic model of robot motion. The input to our method
is a geometric description of the workspace and a motion
model for the robot capable of generating samples of the
next configuration that the robot may attain given the current
configuration and an action. We require that the motion model
satisfy the Markovian property: the distribution of the next
state depends only on the action and current state, which
encodes all necessary past history. As in PRM’s, the method
first samples the configuration space, where the sampling can
be random [20], pseudo-random [23], or utility-guided [11].
We then sample the robot’s motion model to build a Stochastic
Motion Roadmap (SMR), a set of weighted directed graphs
with vertices as sampled states and edges encoding feasible
state transitions and their associated probability of occurrence
for each action.

The focus of our method is not to find a feasible motion
plan, but rather to find an optimal plan that maximizes the
probability that the robot will successfully reach a goal. Given
a query specifying initial and goal configurations, we use the
SMR to formulate a Markov Decision Process (MDP) where
the “decision” corresponds to the action to be selected at
each state in the roadmap. We solve the MDP in polynomial
time using Infinite Horizon Dynamic Programming. Because
the roadmap is a discrete representation of the continuous
configuration space and transition probabilities, the computed
optimal actions are approximations of the optimal actions in
continuous space that converge as the roadmap increases in
size. Although the plan, defined by the computed actions, is
fixed, the path followed by the robot may differ each time
the plan is executed because different state transitions may
occur due to motion uncertainty. As shown in Fig. 1, plans that
explicitly consider uncertainty to maximize the probability of
success can differ substantially from traditional shortest path
plans.

In SMR, “stochastic” refers to the motion of the robot,
not to the sampling of states. PRM’s were previously ex-
tended to explore stochastic motion in molecular conformation
spaces [4, 5], but without a planning component to optimize
actions. Our SMR formulation is applicable to a variety of
decision-based robotics problems. It is particularly suited for
nonholonomic robots, for which a deflection in the path due
to motion uncertainty can result in failure to reach the goal,
even if the deflection does not result in an immediate collision.
The expansion of obstacles using their Minkowski sum [22]
with a circle corresponding to an uncertainty tolerance is often
sufficient for holonomic robots for which deflections can be
immediately corrected, but this does not address collisions
resulting from a nonholonomic constraint as in Fig. 2. By ex-
plicitly considering motion uncertainty in the planning phase,
we hope to minimize such failures.

+r

Fig. 2. The solid line path illustrates a motion plan from the start square to
the goal (cross) for a nonholonomic mobile robot constrained to follow paths
composed of continuously connected arcs of constant-magnitude curvature
with radius of curvature r. If a deflection occurs at the location of the arrow,
then the robot is unable to reach the goal due to the nonholonomic constraint,
even if this deflection is immediately detected, since the robot cannot follow
a path with smaller radius of curvature than the dotted line.

Although we use the terms robot and workspace, SMR’s
are applicable to any motion planning problem that can be
modeled using a continuous configuration space and discrete
action set with uncertain transitions between configurations. In
this paper, we demonstrate a SMR planner using a variant of
a Dubins car with bang-bang control, a nonholonomic mobile
robot that can steer its wheels far left or far right while moving
forward but cannot go straight. This model can generate
motion plans for steerable needles, a new class of flexible
bevel-tip medical needles that clinicians can steer through
soft tissue around obstacles to reach targets inaccessible to
traditional stiff needles [2, 35]. As in many medical appli-
cations, considering uncertainty is crucial to the success of
medical needle insertion procedures: the needle tip may deflect
from the expected path due to tissue inhomogeneities that
cannot be detected prior to the procedure. Due to uncertainty
in predicted needle/tissue interactions, needle steering is ill-
suited to shortest-path plans that may guide the needle through
narrow passageways between critical tissue such as blood
vessels or nerves. By explicitly considering motion uncertainty
using an SMR, we obtain solutions that result in possibly
longer paths but that improve the probability of success.

A. Related Work

Motion planning can consider uncertainty in sensing (the
current state of the robot and workspace is not known with
certainty) and predictability (the future state of the robot and
workspace cannot be deterministically predicted even when
the current state and future actions are known) [22]. Extensive
work has explored uncertainty associated with robot sensing,
including SLAM and POMDP’s to represent uncertainty in
the current state [32, 12]. In this paper, we assume the current
state is known (or can be precisely determined from sensors),
and we focus on the latter type of uncertainty, predictability.

Predictability can be affected by uncertainty in the
workspace and by uncertainty in the robot’s motion. Previous
and ongoing work addresses many aspects of uncertainty in
the workspace, including uncertainty in the goal location,
such as in pursuit-evasion games [22, 24], and in dynamic
environments with moving obstacles [34, 33, 27]. A recently



developed method for grasp planning uses POMDP’s to con-
sider uncertainty in the configuration of the robot and the
state of the objects in the world [18]. In this paper we focus
explicitly on the case of uncertainty in the robot’s motion
rather than in goal or obstacle locations.

Apaydin et al. previously explored the connection between
probabilistic roadmaps and stochastic motions using Stochastic
Roadmap Simulation (SRS), a method designed specifically
for molecular conformation spaces [4, 5]. SRS, which for-
malizes random walks in a roadmap as a Markov Chain,
has been successfully applied to predict average behavior of
molecular motion pathways of proteins and requires orders
of magnitude less computation time than traditional Monte-
Carlo molecular simulations. However, SRS cannot be applied
to more general robotics problems, including needle steering,
because the probabilities associated with state transitions are
specific to molecular scale motions and the method does not
include a planning component to optimize actions.

Considering uncertainty in the robot’s response to actions
during planning results in a stochastic optimal control problem
where feedback is generally required for success. Motion
planners using grid-based numerical methods and geometric
analysis have been applied to robots with motion uncertainty
(sometimes combined with sensing uncertainty) using cost-
based objectives and worst-case analysis [26, 10, 25]. MDP’s,
a general approach that requires explicitly defining transition
probabilities between states, have also been applied to motion
planning by subdividing the workspace using regular grids and
defining transition probabilities for motions between the grid
cells [14, 16, 22]. These methods differ from SMR’s since
they use grids or problem-specific discretization.

Many existing motion planners specialize in finding feasible
paths through narrow passageways in complex configuration
spaces using specialized sampling methods [3, 9]. Since a
narrow passageway is unlikely to be robust to motion uncer-
tainty, finding these passageways is not the ultimate goal of
our method. Our method builds a roadmap that samples the
configuration space with the intent of capturing the transition
probabilities necessary to compute optimal actions.

We apply SMR’s to needle steering, a type of nonholo-
nomic control-based motion planning problem. Nonholonomic
motion planning has a long history in robotics and re-
lated fields [12, 22]. Past work has addressed deterministic
curvature-constrained path planning with obstacles where a
mobile robot’s path is, like a car, constrained by a minimum
turning radius [19, 21, 8, 30, 28]. For steerable needles, Park
et al. applied a numeric diffusion-based method but did not
consider obstacles or motion uncertainty [29]. Alterovitz et al.
proposed an MDP formulation to find a stochastic shortest path
for a steerable needle to a goal configuration, subject to user-
specified “cost” parameters for direction changes, insertion
distance, and collisions [2]. Because these costs are difficult to
quantify, Alterovitz et al. introduced the objective function of
maximizing probability of success [1]. These methods use a
regular grid of states and an ad-hoc, identical discretization of
the motion uncertainty distribution at all states. The methods

do not consider the advantages of sampling states nor the use
of sampling to estimate motion models.

B. SMR Contributions

SMR planning is a general framework that combines a
roadmap representation of configuration space with the theory
of MDP’s to explicitly consider motion uncertainty at the
planning stage to maximize the probability of success. SMR’s
use sampling to both learn the configuration space (represented
as states) and to learn the stochastic motion model (represented
as state transition probabilities). Sampling reduces the need
for problem-specific geometric analysis or discretization for
planning. As demonstrated by the success of PRM’s, sampling
states is useful for modeling complex configuration spaces
that cannot be easily represented geometrically and extends
well to high-dimensional problems. Random or quasi-random
sampling reduces problems associated with using a regular
grid of states, including the high computational complexity in
higher dimensions and the sensitivity of solutions and runtimes
to the selection of axes [22]. Sampling the stochastic motion
model enables the use of a wide variety of motion uncertainty
representations, including directly sampling experimentally
measured data or using parameterized distributions such as a
Gaussian distribution. This greatly improves previous Markov
motion planning approaches that impose an ad-hoc, identical
discretization of the transition probability distributions at all
states [1].

Although SMR is a general framework, it provides improve-
ments for steerable needle planning compared to previously
developed approaches specifically designed for this applica-
tion. Previous planners do not consider uncertainty in needle
motion [29], or apply simplified models that only consider
deflections at decision points and assume that all other motion
model parameters are constant [2, 1]. Because we use sampling
to approximate the motion model rather than a problem-
specific geometric approximation [2, 1], we eliminate the
discretization error at the initial configuration and can easily
include a more complex uncertainty model that considers
arbitrary stochastic models for both insertion distance and
radius of curvature. SMR’s increase flexibility and decrease
computation time; for problems with equal workspace size
and expected values of motion model parameters, a query that
requires over a minute to solve using a grid-based MDP due
to the large number of states needed to bound discretization
error [1] requires just 6 seconds using an SMR.

II. ALGORITHM

A. Input

To build an SMR, the user must first provide input pa-
rameters and function implementations to describe the con-
figuration space and robot motion model. A configuration of
the robot and workspace is defined by a vector x ∈ C =
<d, where d is the number of degrees of freedom in the
configuration space C. At any configuration x, the robot can
perform an action from a discrete action set U of size w.
The bounds of the configuration space are defined by Bmin

i



and Bmax
i for i = 1, . . . , d, which specify the minimum

and maximum values, respectively, for each configuration
degree of freedom i. The functions isCollisionFree(x)
and isCollisionFreePath(x, y) implicitly define obstacles
within the workspace; the former returns true if configuration
x collides with an obstacle and false otherwise, and the latter
returns true if the path (computed by a local planner [20])
from configuration x to y collides with an obstacle and false
otherwise. (We consider exiting the workspace as equivalent
to colliding with an obstacle.) The function distance(x, y)
specifies the distance between two configurations x and y,
which can equal the Euclidean distance in d-dimensional
space or some other user-specified distance metric. The func-
tion generateSampleTransition(x, u) implicitly defines
the motion model and its probabilistic nature; this function
returns a sample from a known probability distribution for
the next configuration given that the robot is currently in
configuration x and will perform action u.

B. Building the Roadmap

We build the stochastic motion roadmap using the algorithm
buildSMR defined in Procedure 1. The roadmap is defined by
a set of vertices V and sets of edges Eu for each action u ∈ U .
The algorithm first samples n collision-free states in the con-
figuration space and stores them in V . In our implementation,
we use a uniform random sampling of the configuration space
inside the bounds defined by (Bmin

i , Bmax
i ) for i = 1, . . . , d,

although other random distributions or quasi- random sampling
methods could be used [12, 23]. For each state s ∈ V and an
action u ∈ U , buildSMR calls the function getTransitions,
defined in Procedure 2, to obtain a set of possible next states
in V and probabilities of entering those states when action u
is performed. We use this set to add to Eu weighted directed
edges (s, t, p), which specify the probability p that the robot
will transition from state s ∈ V to state t ∈ V when currently
in state s and executing action u.

The function getTransitions, defined in Procedure 2,
estimates state transition probabilities. Given the current state
s and an action u, it calls the problem-specific function
generateSampleTransition(x, u) to generate a sample
configuration q and then selects the state t ∈ V closest to q
using the problem-specific distance function. We repeat this
motion sampling m times and then estimate the probability
of transitioning from state s to t as the proportion of times
that this transition occurred out of the m samples. If there is a
collision in the transition from state s to t, then the transition
is replaced with a transition from s to a dedicated “obstacle
state,” which is required to estimate the probability that the
robot collides with an obstacle.

This algorithm has the useful property that the transition
probability from state s to state t in the roadmap equals the
fraction of transition samples that fall inside state t’s Voronoi
cell. This property is implied by the use of nearest neighbor
checking in getTransitions. As m→∞, the probability p
of transitioning from s to t will approach, with probability 1,
the integral of the true transition distribution over the Voronoi

Procedure 1 buildSMR
Input:

n: number of nodes to place in the roadmap
U : set of discrete robot actions
m: number of sample points to generate for each transition

Output:
SMR containing states V and transition probabilities
(weighted edges) Eu for each action u ∈ U

V ← ∅
for all u ∈ U do

Eu ← ∅
while |V | < n do

q ← random state sampled from the configuration space
if isCollisionFree(q) then

V ← V ∪ {q}
for all s ∈ V do

for all u ∈ U do
for all (t, p) ∈ getTransitions(V, s, u,m) do

Eu ← Eu ∪ {(s, t, p)}
return weighted directed graphs Gu = (V,Eu) ∀ u ∈ U

cell of t. As the number of states n→∞, the expected volume
Vt of the Voronoi cell for state t equals V/n→ 0, where V is
the volume of the configuration space. Hence, the error in the
approximation of the probability p due to the use of a discrete
roadmap will decrease as n and m increase.

C. Solving a Query
We define a query by an initial configuration s∗ and a set

of goal configurations T ∗.
Using the SMR and the query input, we build an n × n

transition probability matrix P (u) for each u ∈ U . For each
tuple (s, t, p) ∈ Eu, we set Pst(u) = p so Pst(u) equals
the probability of transitioning from state s to state t given
that action u is performed. We store each matrix P (u) as a
sparse matrix that only includes pointers to a list of non-zero
elements in each row and assume all other entries are 0.

We define ps(i) to be the probability of success given that
the robot is currently in state i. If the position of state i is
inside the goal, ps(i) = 1. If the position of state i is inside
an obstacle, ps(i) = 0. Given an action ui for some other
state i, the probability of success will depend on the response
of the robot to the action and the probability of success from
the next state. The goal of our motion planner is to compute
an optimal action ui to maximize the expected probability of
success at every state i:

ps(i) = max
ui

{E[ps(j)|i, ui]} , (1)

where the expectation is over j, a random variable for the
next state. Since the roadmap is a discrete approximation of
the continuous configuration space, we expand the expected
value in Eq. 1 to a summation:

ps(i) = max
ui

∑
j∈V

Pij(ui)ps(j)

 . (2)



Procedure 2 getTransitions

Input:
V : configuration space samples
s: current robot state, s ∈ V
u: action that the robot will execute, u ∈ U
m: number of sample points to generate for this transition

Output:
List of tuples (t, p) where p is the probability of transition-
ing from state s ∈ V to state t ∈ V after executing u.
R← ∅
for i = 1 to m do

q = generateSampleTransition(s, u)
if isCollisionFreePath(s, q) then

t← arg mint∈V distance(q, t)
else

t← obstacle state
if (t, p) ∈ R for some p then

Remove (t, p) from R
R← R ∪ {(t, p + 1/m)}

else
R← R ∪ {(t, 1/m)}

return R

We observe that Eq. 2 is an MDP and has the form of the
Bellman equation for a stochastic shortest path problem [7]:

J∗(i) = max
ui

∑
j∈V

Pij(ui) (g(i, ui, j) + J∗(j)). (3)

where g(i, ui, j) is a “reward” for transitioning from state i to
j after action ui. In our case, g(i, ui, j) = 0 for all i, ui, and
j, and J∗(i) = ps(i).

Stochastic shortest path problems of the form in Eq. 3 can be
optimally solved using infinite horizon dynamic programming.
For stationary Markovian problems, the configuration space
does not change over time, which implies that the optimal
action at each state is purely a function of the state without
explicit dependence on time. Infinite horizon dynamic pro-
gramming is a type of dynamic programming (DP) in which
there is no finite time horizon [7]. Specifically, we use the
value iteration algorithm [7], which iteratively updates ps(i)
for each state i by evaluating Eq. 3. This generates a DP look-
up table containing the optimal action ui and the probability
of success ps(i) for each i ∈ V .

The algorithm is guaranteed to terminate in n (the number
of states) iterations if the transition probability graph cor-
responding to some optimal stationary policy is acyclic [7].
Violation of this requirement can occur in rare cases in which
a cycle is feasible and deviating from the cycle will result in
imminent failure. To remove this possibility, we introduce a
small penalty γ for each transition by setting g(i, ui, j) = −γ
in Eq. 3. Increasing γ has the effect of giving preference to
shorter paths at the expense of a less precise estimate of the
probability of success, where the magnitude of the error is
(weakly) bounded by γn.

D. Computational Complexity

Building an SMR requires O(n) time to create the states V ,
not including collision detection. Generating the edges in Eu

requires O(wn) calls to generateTransitions, where w =
|U |. For computational efficiency, it is not necessary to con-
solidate multiple tuples with the same next state t; the addition
p+1/m can be computed automatically during value iteration.
Hence, each call requires O(mdn) time using brute-force
nearest neighbor checking. For certain low-dimensional con-
figuration spaces, this can be reduced to O (m exp (d) log (n))
using kd-trees [6]. Hence, the total time complexity of building
an SMR is O

(
wmdn2

)
or O (wm exp (d) n log (n)). This

does not include the cost of n state collision checks and nm
checks of collision free paths, which are problem-specific and
may increase the computational complexity depending on the
workspace definition.

Solving a query requires building the transition probability
matrices and executing value iteration. Although the matrices
Pij(u) each have n2 entries, we do not store the zero entries as
described above. Since the robot will generally only transition
to a state j in the spatial vicinity of state i, each row of Pij(u)
has only k nonzero entries, where k << n. Building the
sparse matrices requires O(wkn) time. By only accessing the
nonzero entries of Pij(u) during the value iteration algorithm,
each iteration for solving a query requires only O(wkn) rather
than O(wn2) time. Thus, the value iteration algorithm’s total
time complexity is O(wkn2) since the number of iterations is
bounded by n. To further improve performance, we terminate
value iteration when the maximum change ε over all states is
less than some user-specified threshold ε∗. In our test cases, we
used ε∗ = 10−7, which resulted in far fewer than n iterations.

III. SMR FOR MEDICAL NEEDLE STEERING

Diagnostic and therapeutic medical procedures such as
extracting tissue samples for biopsies, injecting drugs for
anesthesia, or implanting radioactive seeds for brachytherapy
cancer treatment require insertion of a needle to a specific
location in soft tissue. A new class of needles, steerable
needles, are composed of a flexible material and with a
bevel-tip that can be steered to targets in soft tissue that are
inaccessible to traditional stiff needles [35, 36, 2]. Steerable
needles are controlled by two degrees of freedom actuated at
the needle base: insertion distance and bevel direction. When
the needle is inserted, the asymmetric force applied by the
bevel causes the needle to bend and follow a path of constant
curvature through the tissue in the direction of the bevel [35].
Webster et al. experimentally demonstrated that, under ideal
conditions, the curve has a constant radius of curvature r.

We assume the workspace is extracted from a medical
image, where obstacles represent tissues that cannot be cut by
the needle, such as bone, or sensitive tissues that should not be
damaged, such as nerves or arteries. In this paper we consider
motion plans in an imaging plane since the speed/resolution
trade-off of 3-D imaging modalities is generally poor for 3-
D interventional applications. We assume the needle moves
a distance δ between image acquisitions that are used to



(a) (b)

Fig. 3. The state of a bang-bang steering car is defined by point p, orientation
θ, and turning direction b (a). The car moves forward along an arc of constant
curvature and can turn either left (a) or right (b).

determine the current needle position and orientation. We do
not consider motion by the needle out of the imaging plane or
needle retraction, which modifies the tissue and can influence
future insertions. When restricted to motion in a plane, the
bevel direction can be set to point left (b = 0) or right (b = 1)
[35]. Due to the nonholonomic constraint imposed by the
bevel, the motion of the needle tip can be modeled as a bang-
bang steering car, a variant of a Dubins car that can only turn
its wheels far left or far right while moving forward [35, 1].

Clinicians performing medical needle insertion procedures
must consider uncertainty in the needle’s motion through tissue
due to patient differences and the difficulty in predicting nee-
dle/tissue interaction. Bevel direction changes further increase
uncertainty due to stiffness along the needle shaft. Medical
imaging in the operating room can be used to measure the
needle’s current position and orientation to provide feedback
to the planner [13, 15], but this measurement by itself provides
no information about the effect of future deflections during
insertion due to motion uncertainty.

Stochastic motion roadmaps offer features particularly ben-
eficial for medical needle steering. First, SMR’s explicitly
consider uncertainty in the motion of the needle. Second, intra-
operative medical imaging can be combined with the fast SMR
queries to permit control of the needle in the operating room
without requiring time-consuming intra-operative re-planning.

A. SMR Implementation

We formulate the SMR for a bang-bang steering car, which
can be applied to needle steering. The state of such a car is
fully characterized by its position p = (x, y), orientation angle
θ, and turning direction b, where b is either left (b = 0) or right
(b = 1). Hence, the dimension of the state space is d = 4, and
a state i is defined by si = (xi, yi, θi, bi), as illustrated in
Fig. 3. We encode bi in the state since it is a type of history
parameter that is required by the motion uncertainty model.
Since an SMR assumes that each component of the state vector
is a real number, we define the binary bi as the floor of the
fourth component in si, which we bound in the range [0, 2).

Between sensor measurements of state, we assume the car
moves a distance δ. The set U consists of two actions: move
forward turning left (u = 0), or move forward turning right
(u = 1). As the car moves forward, it traces an arc of length
δ with radius of curvature r and direction based on u. We
consider r and δ as random variables drawn from a given
distribution. In this paper, we consider δ ∼ N(δ0, σδa

) and r ∼
N(r0, σra

), where N is a normal distribution with given mean
and standard deviation parameters and a ∈ {0, 1} indicates di-

(a) Minimizing path length
ps = 35%

(b) Maximizing ps using SMR
ps = 83%

Fig. 4. Explicitly considering motion uncertainty using an SMR planner
improves the probability of success.
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on the probability of success ps.

rection change. We implement generateSampleTransition
to draw random samples from these distributions. Although the
uncertainty parameters can be difficult to measure precisely,
even rough estimates may be more realistic than using deter-
ministic transitions when uncertainty is high.

We define the workspace as a rectangle of width xmax

and height ymax and define obstacles as polygons in the
plane. To detect obstacle collisions, we use the zero-
winding rule [17]. We define the distance between two
states s1 and s2 to be the weighted Euclidean dis-
tance between the poses plus an indicator variable to en-
sure the turning directions match: distance(s1, s2) =√

(x1 − x2)2 + (y1 − y2)2 + α(θ1 − θ2)2 + M , where M →
∞ if b1 6= b2, and M = 0 otherwise. For fast nearest-neighbor
computation, we use the CGAL implementation of kd-trees
[31]. Since the distance function is non-Euclidean, we use
the formulation developed by Atramentov and LaValle to build
the kd-tree [6]. We define the goal T ∗ as all configuration
states within a ball of radius tr centered at a point t∗.

B. Results

We implemented the SMR planner in C++ and tested the
method on workspaces of size xmax = ymax = 10 with



polygonal obstacles as shown in shown in Fig. 1 and Fig. 4. We
set the robot parameters r0 = 2.5 and δ0 = 0.5 with motion
uncertainty parameters σδ0 = 0.1, σδ1 = 0.2, σr0 = 0.5, and
σr1 = 1.0. We set parameters γ = 0.00001 and α = 2.0.
We tested the motion planner on a 2.2 GHz AMD Opteron
PC. Building the SMR required approximately 1 minute for
n = 50,000 states, executing a query required 6 seconds, and
additional queries for the same goal required less than 1 second
of computation time for both example problems.

We evaluate the plans generated by SMR with multiple
randomized simulations. Given the current state of the robot,
we query the SMR to obtain an optimal action u. We then
execute this action and compute the expected next state. We
repeat until the robot reaches the goal or hits an obstacle,
and we illustrate the resulting expected path. Since the motion
response of the robot to actions is not deterministic, success
of the procedure can rarely be guaranteed. To estimate ps,
we run the simulation 100 times, sampling the next state
from the transition probability distribution rather than selecting
the expected value, and we compute the number of goal
acquisitions divided by the number of obstacle collisions.

In Fig. 4(b), we illustrate the expected path using an SMR
with m = 20 motion samples and n = 200,000 states.
As in Fig. 1(b), the robot avoids passing through a narrow
passageway near the goal and instead takes a longer route. The
selection of the longer path is not due to insufficient states in
the SMR; there exist paths in the SMR that pass through the
narrow gaps between the obstacles. The plan resulting in a
longer path is selected purely because it maximizes ps.

The probability of success ps improves as the sampling
density of the configuration space and the motion uncertainty
distribution increase, as shown in Fig. 5. As n and m increase,
ps(s) is more accurately approximated over the configuration
space, resulting in better action decisions. However, the im-
provement effectively converges for n ≥ 50,000 and m ≥
20, suggesting the inherent difficulty of the motion planning
problem. Furthermore, the expected path does not vary from
the path shown in Fig. 4(b) for n ≥ 20,000 and m ≥ 10.
The number of states required by SMR planner is far smaller
than the 800,000 states required for a similar problem using
a grid-based approach with bounded error [1].

In Fig. 4(a), we computed the optimal shortest path assum-
ing deterministic motion of the robot using a fine regular
discrete grid with 816,080 states for which the error due
to discretization is small and bounded [1]. We estimate ps

using the same simulation methodology as for an SMR plan,
except that we re-plan the shortest path from the sampled state
for each query. The expected shortest path passes through a
narrow passage between obstacles and the resulting probability
of success is substantially lower compared to the SMR plan.
The result was similar for the example in Fig. 1; explicitly
considering motion uncertainty improved the probability of
success.

To further illustrate the importance of explicitly considering
uncertainty during motion planning, we vary the standard
deviation parameters σδ0 , σδ1 , σr0 , and σr1 . In Fig. 6, we

(a) High uncertainty
ps = 78%

(b) Low uncertainty
ps = 87%

Fig. 6. The level of uncertainty affects SMR planning results. In cases
of low uncertainty (with 75% reduction in distribution standard deviations),
the expected path resembles a deterministic shortest path due to the small
influence of uncertainty on ps and the effect of the penalty term γ. In both
these examples, the same n = 200,000 states were used in the roadmap.

(a) Successful procedure (b) Unsuccessful procedure

Fig. 7. Two simulated procedures of needle steering, one successful (a) and
one unsuccessful due to effects of uncertain motion (b), using an SMR with
n = 50,000 states.

compute a plan for a robot with each standard deviation
parameter set to a quarter of its default value. For this low
uncertainty case, the uncertainty is not sufficient to justify
avoiding the narrow passageway; the penalty γ causes the plan
to resemble the deterministic shortest plan in Fig. 4(a). Also,
ps is substantially higher because of the lower uncertainty.

In Fig. 7, we execute the planner in the context of an
image-guided procedure. We assume the needle tip position
and orientation is extracted from a medical image and then
execute a query, simulate the needle motion by drawing a
sample from the motion uncertainty distribution, and repeat.
The effect of uncertainty can be seen as deflections in the path.
In practice, clinicians could monitor ps(s) for the current state
s as the procedure progresses.

IV. CONCLUSION

In many motion planning applications, the response of the
robot to commanded actions cannot be precisely predicted. We
introduce the Stochastic Motion Roadmap (SMR), a new mo-
tion planning framework that explicitly considers uncertainty
in robot motion to maximize the probability that a robot will
avoid obstacle collisions and successfully reach a goal. SMR
planners combine the roadmap representation of configuration
space used in PRM with the theory of MDP’s to explicitly
consider motion uncertainty at the planning stage.



To demonstrate SMR’s, we considered a nonholonomic
mobile robot with bang-bang control, a type of Dubins-car
robot model that can be applied to steering medical needles
through soft tissue. Needle steering, like many other medical
procedures, is subject to substantial motion uncertainty and is
therefore ill-suited to shortest-path plans that may guide medi-
cal tools through narrow passageways between critical tissues.
Using randomized simulation, we demonstrated that SMR’s
generate motion plans with significantly higher probabilities
of success compared to traditional shortest-path approaches.

In future work, we will extend the SMR framework and
explore new applications with higher dimensional configura-
tion spaces. We plan to extend the formulation to also consider
actions in a continuous range rather than solely from a discrete
set, to investigate more sophisticated sampling methods for
generating configuration samples and for estimating transition
probabilities, and to integrate the effects of sensing uncertainty.
We also plan to explore new biomedical and industrial appli-
cations where uncertainty in motion should be considered to
maximize the probability of success.
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